Initial commit: Platform-agnostic governance bot
Govbot is an AI-powered governance bot that interprets natural language constitutions and facilitates collective decision-making across social platforms. Core features: - Agentic architecture with constitutional reasoning (RAG) - Platform-agnostic design (Mastodon, Discord, Telegram, etc.) - Action primitives for flexible governance processes - Temporal awareness for multi-day proposals and voting - Audit trail with constitutional citations - Reversible actions with supermajority veto - Works with local (Ollama) and cloud AI models Platform support: - Mastodon: Full implementation with streaming, moderation, and admin skills - Discord/Telegram: Platform abstraction ready for implementation Documentation: - README.md: Architecture and overview - QUICKSTART.md: Getting started guide - PLATFORMS.md: Platform implementation guide for developers - MASTODON_SETUP.md: Complete Mastodon deployment guide - constitution.md: Example governance constitution Technical stack: - Python 3.11+ - SQLAlchemy for state management - llm CLI for model abstraction - Mastodon.py for Mastodon integration - Pydantic for configuration validation Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
This commit is contained in:
562
src/govbot/agent.py
Normal file
562
src/govbot/agent.py
Normal file
@@ -0,0 +1,562 @@
|
||||
"""
|
||||
AI Agent Orchestration for Governance Bot.
|
||||
|
||||
This is the core agentic system that:
|
||||
1. Receives governance requests
|
||||
2. Consults the constitution (via RAG)
|
||||
3. Plans appropriate actions
|
||||
4. Executes using primitives
|
||||
5. Maintains audit trail
|
||||
"""
|
||||
|
||||
import json
|
||||
import subprocess
|
||||
from typing import Dict, Any, Optional, List
|
||||
from datetime import datetime, timedelta
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from .governance.constitution import ConstitutionalReasoner
|
||||
from .governance.primitives import GovernancePrimitives
|
||||
from .db import queries
|
||||
|
||||
|
||||
class GovernanceAgent:
|
||||
"""
|
||||
The AI agent that interprets requests and orchestrates governance actions.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
db_session: Session,
|
||||
constitution_path: str,
|
||||
model: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Initialize the governance agent.
|
||||
|
||||
Args:
|
||||
db_session: Database session
|
||||
constitution_path: Path to constitution file
|
||||
model: LLM model to use (None for default)
|
||||
"""
|
||||
self.db = db_session
|
||||
self.constitution = ConstitutionalReasoner(constitution_path, model)
|
||||
self.primitives = GovernancePrimitives(db_session)
|
||||
self.model = model
|
||||
|
||||
def process_request(
|
||||
self, request: str, actor: str, context: Optional[Dict[str, Any]] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Process a governance request from a user.
|
||||
|
||||
This is the main agentic loop:
|
||||
1. Parse intent
|
||||
2. Consult constitution
|
||||
3. Plan actions
|
||||
4. Execute with audit trail
|
||||
5. Return response
|
||||
|
||||
Args:
|
||||
request: Natural language request from user
|
||||
actor: Who made the request (Mastodon handle)
|
||||
context: Optional context (thread ID, etc.)
|
||||
|
||||
Returns:
|
||||
Dict with 'response', 'actions_taken', 'process_id', etc.
|
||||
"""
|
||||
# Step 1: Parse intent
|
||||
intent = self._parse_intent(request, actor)
|
||||
|
||||
if intent.get("error"):
|
||||
return {"response": intent["error"], "success": False}
|
||||
|
||||
# Step 2: Consult constitution
|
||||
constitutional_guidance = self.constitution.query(
|
||||
question=intent["intent_description"],
|
||||
context=f"Actor: {actor}, Request: {request}",
|
||||
)
|
||||
|
||||
# Step 3: Check for ambiguity
|
||||
if constitutional_guidance.get("confidence") == "low":
|
||||
return self._handle_ambiguity(
|
||||
request, actor, constitutional_guidance
|
||||
)
|
||||
|
||||
# Step 4: Plan actions
|
||||
action_plan = self._plan_actions(
|
||||
intent, constitutional_guidance, actor, context
|
||||
)
|
||||
|
||||
# Step 5: Execute plan
|
||||
result = self._execute_plan(action_plan, actor)
|
||||
|
||||
return result
|
||||
|
||||
def _parse_intent(self, request: str, actor: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Use AI to parse user intent from natural language.
|
||||
|
||||
Args:
|
||||
request: User's request
|
||||
actor: Who made the request
|
||||
|
||||
Returns:
|
||||
Dict with 'intent_type', 'intent_description', 'parameters'
|
||||
"""
|
||||
prompt = f"""Parse this governance request and extract structured information.
|
||||
|
||||
REQUEST: "{request}"
|
||||
ACTOR: {actor}
|
||||
|
||||
Identify:
|
||||
1. Intent type (e.g., "create_proposal", "cast_vote", "query_constitution", "appeal", etc.)
|
||||
2. Clear description of what the user wants
|
||||
3. Key parameters extracted from request
|
||||
|
||||
Respond with JSON:
|
||||
{{
|
||||
"intent_type": "the type of intent",
|
||||
"intent_description": "clear description of what user wants",
|
||||
"parameters": {{
|
||||
"key": "value"
|
||||
}}
|
||||
}}
|
||||
"""
|
||||
|
||||
try:
|
||||
result = self._call_llm(prompt)
|
||||
parsed = self._extract_json(result)
|
||||
return parsed
|
||||
except Exception as e:
|
||||
return {"error": f"Could not parse request: {str(e)}"}
|
||||
|
||||
def _plan_actions(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
context: Optional[Dict[str, Any]],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Plan the sequence of primitive actions to fulfill the intent.
|
||||
|
||||
Args:
|
||||
intent: Parsed intent
|
||||
constitutional_guidance: Constitutional interpretation
|
||||
actor: Who initiated
|
||||
context: Additional context
|
||||
|
||||
Returns:
|
||||
Action plan dictionary
|
||||
"""
|
||||
intent_type = intent.get("intent_type")
|
||||
|
||||
# Route to specific planning function based on intent
|
||||
if intent_type == "create_proposal":
|
||||
return self._plan_proposal_creation(
|
||||
intent, constitutional_guidance, actor, context
|
||||
)
|
||||
elif intent_type == "cast_vote":
|
||||
return self._plan_vote_casting(
|
||||
intent, constitutional_guidance, actor, context
|
||||
)
|
||||
elif intent_type == "query_constitution":
|
||||
return self._plan_constitutional_query(
|
||||
intent, constitutional_guidance, actor
|
||||
)
|
||||
elif intent_type == "appeal":
|
||||
return self._plan_appeal(
|
||||
intent, constitutional_guidance, actor, context
|
||||
)
|
||||
else:
|
||||
# Generic planning using AI
|
||||
return self._plan_generic(
|
||||
intent, constitutional_guidance, actor, context
|
||||
)
|
||||
|
||||
def _plan_proposal_creation(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
context: Optional[Dict[str, Any]],
|
||||
) -> Dict[str, Any]:
|
||||
"""Plan actions for creating a proposal"""
|
||||
params = intent.get("parameters", {})
|
||||
proposal_text = params.get("proposal_text", intent.get("intent_description"))
|
||||
|
||||
# Interpret proposal to determine type and requirements
|
||||
proposal_info = self.constitution.interpret_proposal(proposal_text)
|
||||
|
||||
# Build action plan
|
||||
plan = {
|
||||
"intent_type": "create_proposal",
|
||||
"constitutional_basis": constitutional_guidance.get("citations", []),
|
||||
"actions": [
|
||||
{
|
||||
"primitive": "create_process",
|
||||
"args": {
|
||||
"process_type": f"{proposal_info['proposal_type']}_proposal",
|
||||
"creator": actor,
|
||||
"deadline_days": proposal_info.get("discussion_period_days", 6),
|
||||
"constitutional_basis": str(constitutional_guidance.get("citations")),
|
||||
"initial_state": {
|
||||
"proposal_text": proposal_text,
|
||||
"proposal_type": proposal_info["proposal_type"],
|
||||
"voting_threshold": proposal_info.get("voting_threshold"),
|
||||
"votes": {},
|
||||
},
|
||||
"mastodon_thread_id": context.get("thread_id")
|
||||
if context
|
||||
else None,
|
||||
},
|
||||
},
|
||||
{
|
||||
"primitive": "schedule_reminder",
|
||||
"args": {
|
||||
"when": "deadline", # Will be calculated from process deadline
|
||||
"message": f"Proposal by {actor} has reached its deadline. Counting votes.",
|
||||
},
|
||||
},
|
||||
],
|
||||
"response_template": f"""Proposal created: {proposal_text[:100]}...
|
||||
|
||||
Type: {proposal_info['proposal_type']}
|
||||
Discussion period: {proposal_info.get('discussion_period_days')} days
|
||||
Voting threshold: {proposal_info.get('voting_threshold')}
|
||||
|
||||
Constitutional basis: {', '.join(constitutional_guidance.get('citations', []))}
|
||||
|
||||
Reply with 'agree', 'disagree', 'abstain', or 'block' to vote.
|
||||
Process ID: {{process_id}}
|
||||
""",
|
||||
}
|
||||
|
||||
return plan
|
||||
|
||||
def _plan_vote_casting(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
context: Optional[Dict[str, Any]],
|
||||
) -> Dict[str, Any]:
|
||||
"""Plan actions for casting a vote"""
|
||||
params = intent.get("parameters", {})
|
||||
vote_type = params.get("vote_type", "agree").lower()
|
||||
process_id = params.get("process_id")
|
||||
|
||||
if not process_id:
|
||||
return {
|
||||
"error": "Could not identify which proposal to vote on. Please reply to a proposal thread."
|
||||
}
|
||||
|
||||
plan = {
|
||||
"intent_type": "cast_vote",
|
||||
"constitutional_basis": constitutional_guidance.get("citations", []),
|
||||
"actions": [
|
||||
{
|
||||
"primitive": "update_process_state",
|
||||
"args": {
|
||||
"process_id": process_id,
|
||||
"state_updates": {
|
||||
f"votes.{actor}": {
|
||||
"vote": vote_type,
|
||||
"timestamp": datetime.utcnow().isoformat(),
|
||||
}
|
||||
},
|
||||
"actor": actor,
|
||||
},
|
||||
}
|
||||
],
|
||||
"response_template": f"""Vote recorded: {vote_type}
|
||||
|
||||
Voter: {actor}
|
||||
Process: {{process_id}}
|
||||
""",
|
||||
}
|
||||
|
||||
return plan
|
||||
|
||||
def _plan_constitutional_query(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
) -> Dict[str, Any]:
|
||||
"""Plan response for constitutional query"""
|
||||
return {
|
||||
"intent_type": "query_constitution",
|
||||
"actions": [], # No state changes needed
|
||||
"response_template": f"""Constitutional Interpretation:
|
||||
|
||||
{constitutional_guidance['answer']}
|
||||
|
||||
Citations: {', '.join(constitutional_guidance.get('citations', []))}
|
||||
Confidence: {constitutional_guidance.get('confidence', 'medium')}
|
||||
""",
|
||||
}
|
||||
|
||||
def _plan_appeal(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
context: Optional[Dict[str, Any]],
|
||||
) -> Dict[str, Any]:
|
||||
"""Plan actions for an appeal"""
|
||||
params = intent.get("parameters", {})
|
||||
action_id = params.get("action_id")
|
||||
|
||||
plan = {
|
||||
"intent_type": "appeal",
|
||||
"constitutional_basis": constitutional_guidance.get("citations", []),
|
||||
"actions": [
|
||||
{
|
||||
"primitive": "create_process",
|
||||
"args": {
|
||||
"process_type": "appeal",
|
||||
"creator": actor,
|
||||
"deadline_days": 3,
|
||||
"constitutional_basis": "Article 6: Appeals",
|
||||
"initial_state": {
|
||||
"appealed_action_id": action_id,
|
||||
"appellant": actor,
|
||||
"votes": {},
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
"response_template": f"""Appeal initiated by {actor}
|
||||
|
||||
Appealing action: {{action_id}}
|
||||
Discussion period: 3 days
|
||||
|
||||
Community members can vote on whether to override the action.
|
||||
""",
|
||||
}
|
||||
|
||||
return plan
|
||||
|
||||
def _plan_generic(
|
||||
self,
|
||||
intent: Dict[str, Any],
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
actor: str,
|
||||
context: Optional[Dict[str, Any]],
|
||||
) -> Dict[str, Any]:
|
||||
"""Use AI to plan generic actions"""
|
||||
# This is a fallback for intents we haven't explicitly coded
|
||||
prompt = f"""Based on this intent and constitutional guidance, plan the primitive actions needed.
|
||||
|
||||
INTENT: {json.dumps(intent, indent=2)}
|
||||
|
||||
CONSTITUTIONAL GUIDANCE: {json.dumps(constitutional_guidance, indent=2)}
|
||||
|
||||
Available primitives:
|
||||
- create_process(process_type, creator, deadline_days, constitutional_basis, initial_state)
|
||||
- update_process_state(process_id, state_updates, actor)
|
||||
- store_record(record_type, data, actor, reasoning, citation)
|
||||
- schedule_reminder(when, message)
|
||||
|
||||
Plan the actions as JSON:
|
||||
{{
|
||||
"actions": [
|
||||
{{"primitive": "name", "args": {{...}}}}
|
||||
],
|
||||
"response_template": "Message to send user"
|
||||
}}
|
||||
"""
|
||||
|
||||
try:
|
||||
result = self._call_llm(prompt)
|
||||
plan = self._extract_json(result)
|
||||
plan["intent_type"] = intent.get("intent_type")
|
||||
plan["constitutional_basis"] = constitutional_guidance.get("citations", [])
|
||||
return plan
|
||||
except Exception as e:
|
||||
return {
|
||||
"error": f"Could not plan actions: {str(e)}",
|
||||
"intent": intent,
|
||||
"guidance": constitutional_guidance,
|
||||
}
|
||||
|
||||
def _execute_plan(
|
||||
self, plan: Dict[str, Any], actor: str
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Execute the planned actions using primitives.
|
||||
|
||||
Args:
|
||||
plan: Action plan
|
||||
actor: Who initiated
|
||||
|
||||
Returns:
|
||||
Execution result
|
||||
"""
|
||||
if plan.get("error"):
|
||||
return {"response": plan["error"], "success": False}
|
||||
|
||||
executed_actions = []
|
||||
process_id = None
|
||||
|
||||
try:
|
||||
for action in plan.get("actions", []):
|
||||
primitive = action["primitive"]
|
||||
args = action["args"]
|
||||
|
||||
# Get the primitive function
|
||||
if hasattr(self.primitives, primitive):
|
||||
func = getattr(self.primitives, primitive)
|
||||
|
||||
# Handle special cases like deadline calculation
|
||||
if "when" in args and args["when"] == "deadline":
|
||||
# Calculate from process deadline
|
||||
if process_id:
|
||||
process = queries.get_process(self.db, process_id)
|
||||
args["when"] = process.deadline
|
||||
|
||||
result = func(**args)
|
||||
|
||||
# Track process ID for response
|
||||
if primitive == "create_process":
|
||||
process_id = result
|
||||
|
||||
executed_actions.append(
|
||||
{"primitive": primitive, "result": result}
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unknown primitive: {primitive}")
|
||||
|
||||
# Build response
|
||||
response_template = plan.get("response_template", "Action completed.")
|
||||
response = response_template.format(
|
||||
process_id=process_id, action_id=executed_actions[0].get("result")
|
||||
if executed_actions
|
||||
else None
|
||||
)
|
||||
|
||||
return {
|
||||
"response": response,
|
||||
"success": True,
|
||||
"process_id": process_id,
|
||||
"actions_taken": executed_actions,
|
||||
"constitutional_basis": plan.get("constitutional_basis"),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
return {
|
||||
"response": f"Error executing actions: {str(e)}",
|
||||
"success": False,
|
||||
"partial_actions": executed_actions,
|
||||
}
|
||||
|
||||
def _handle_ambiguity(
|
||||
self,
|
||||
request: str,
|
||||
actor: str,
|
||||
constitutional_guidance: Dict[str, Any],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Handle constitutional ambiguity by requesting clarification.
|
||||
|
||||
Args:
|
||||
request: Original request
|
||||
actor: Who made request
|
||||
constitutional_guidance: The ambiguous guidance
|
||||
|
||||
Returns:
|
||||
Response explaining ambiguity
|
||||
"""
|
||||
ambiguity = constitutional_guidance.get("ambiguity", "Constitutional interpretation unclear")
|
||||
|
||||
# Create clarification request
|
||||
clarification = queries.create_clarification(
|
||||
session=self.db,
|
||||
question=f"Ambiguity in request '{request}': {ambiguity}",
|
||||
)
|
||||
|
||||
response = f"""I encountered constitutional ambiguity in processing your request.
|
||||
|
||||
Question: {ambiguity}
|
||||
|
||||
This requires community clarification. Members can discuss and provide guidance.
|
||||
|
||||
Clarification ID: {clarification.id}
|
||||
"""
|
||||
|
||||
return {
|
||||
"response": response,
|
||||
"success": False,
|
||||
"requires_clarification": True,
|
||||
"clarification_id": clarification.id,
|
||||
}
|
||||
|
||||
def check_deadlines(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Check for processes that have passed their deadline.
|
||||
This should be called periodically by a background task.
|
||||
|
||||
Returns:
|
||||
List of processes that were completed
|
||||
"""
|
||||
overdue_processes = queries.get_processes_past_deadline(self.db)
|
||||
completed = []
|
||||
|
||||
for process in overdue_processes:
|
||||
# Count votes
|
||||
counts = self.primitives.count_votes(process.id)
|
||||
|
||||
# Determine threshold from process state
|
||||
threshold_type = process.state_data.get(
|
||||
"voting_threshold", "simple_majority"
|
||||
)
|
||||
|
||||
# Check if passed
|
||||
passed = self.primitives.check_threshold(counts, threshold_type)
|
||||
|
||||
outcome = "passed" if passed else "failed"
|
||||
|
||||
# Complete the process
|
||||
self.primitives.complete_process(
|
||||
process_id=process.id,
|
||||
outcome=outcome,
|
||||
reasoning=f"Vote counts: {counts}. Threshold: {threshold_type}. Result: {outcome}",
|
||||
)
|
||||
|
||||
completed.append(
|
||||
{
|
||||
"process_id": process.id,
|
||||
"outcome": outcome,
|
||||
"vote_counts": counts,
|
||||
}
|
||||
)
|
||||
|
||||
return completed
|
||||
|
||||
def _call_llm(self, prompt: str) -> str:
|
||||
"""Call the LLM via llm CLI"""
|
||||
cmd = ["llm", "prompt"]
|
||||
if self.model:
|
||||
cmd.extend(["-m", self.model])
|
||||
cmd.append(prompt)
|
||||
|
||||
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
||||
return result.stdout.strip()
|
||||
|
||||
def _extract_json(self, text: str) -> Dict[str, Any]:
|
||||
"""Extract JSON from LLM response"""
|
||||
# Handle markdown code blocks
|
||||
if "```json" in text:
|
||||
start = text.find("```json") + 7
|
||||
end = text.find("```", start)
|
||||
json_str = text[start:end].strip()
|
||||
elif "```" in text:
|
||||
start = text.find("```") + 3
|
||||
end = text.find("```", start)
|
||||
json_str = text[start:end].strip()
|
||||
else:
|
||||
json_str = text
|
||||
|
||||
return json.loads(json_str)
|
||||
Reference in New Issue
Block a user