Final Chatbot code
This commit is contained in:
parent
8968f23271
commit
e6f05a9465
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
myenv/
|
||||
__pycache__/
|
||||
|
12
chatbot/__init__.py
Normal file
12
chatbot/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
from flask import Flask
|
||||
from flask_cors import CORS
|
||||
|
||||
def create_app(test_config=None):
|
||||
# create and configure the app
|
||||
app = Flask(__name__, instance_relative_config=True)
|
||||
CORS(app)
|
||||
|
||||
from . import routes
|
||||
app.register_blueprint(routes.bp)
|
||||
|
||||
return app
|
103
chatbot/routes.py
Normal file
103
chatbot/routes.py
Normal file
@ -0,0 +1,103 @@
|
||||
import pandas as pd
|
||||
from flask_cors import CORS
|
||||
from flask import (
|
||||
Blueprint, request, jsonify
|
||||
)
|
||||
|
||||
bp = Blueprint('routes', __name__,)
|
||||
df = pd.read_csv('rule.csv')
|
||||
user_input = "Improve the living and working conditions of everyone everywhere Fair and humane laws and practices"
|
||||
compare_column1 = df['summary']
|
||||
compare_column2 = df['modules']
|
||||
return_column = df['name']
|
||||
@bp.route('/request', methods=('GET', 'POST'))
|
||||
def handle_request():
|
||||
|
||||
#user_input = request.args.get('question')
|
||||
#closest_value, ruleId = find_closest_match(user_input, df['summary'], df['modules'], df['name'], df['ruleID'])
|
||||
|
||||
|
||||
#finalValue = "https://communityrule.info/create/?r=" + str(ruleId)
|
||||
#response_message = f"{closest_value}"
|
||||
|
||||
#response_data = {
|
||||
# 'community': response_message,
|
||||
# 'link': finalValue
|
||||
#}
|
||||
|
||||
#return jsonify(response_data)
|
||||
|
||||
user_input = request.args.get('question')
|
||||
top_matches = find_closest_match(user_input, df['summary'], df['modules'], df['name'], df['ruleID'])
|
||||
|
||||
recommendations = []
|
||||
for similarity, name, ruleId in top_matches:
|
||||
finalValue = f"https://communityrule.info/create/?r={ruleId}"
|
||||
recommendations.append({
|
||||
'community': name,
|
||||
'link': finalValue,
|
||||
})
|
||||
|
||||
print(jsonify(recommendations))
|
||||
return jsonify(recommendations)
|
||||
|
||||
|
||||
#finalValue = "https://communityrule.info/create/?r=" + str(ruleId)
|
||||
#response_message = f"{closest_value}"
|
||||
|
||||
#response_data = {
|
||||
# 'community': response_message,
|
||||
# 'link': finalValue
|
||||
#}
|
||||
|
||||
#return jsonify(response_data)
|
||||
|
||||
def find_closest_match(user_input, compare_column1_values, compare_column2_values, return_column_values, rule_id_values):
|
||||
print(user_input)
|
||||
max_similarity_curr = -1
|
||||
closest_value = None
|
||||
rule_id = None
|
||||
user_tokens = user_input.split()
|
||||
results = []
|
||||
# Compare user input with each value in the compare columns
|
||||
for compare_value1, compare_value2, return_value, ruleId in zip(compare_column1_values, compare_column2_values, return_column_values, rule_id_values):
|
||||
# Convert compare_value2 to string if it's a float
|
||||
if isinstance(compare_value1, float):
|
||||
compare_value1 = str(compare_value1)
|
||||
if isinstance(compare_value2, float):
|
||||
compare_value2 = str(compare_value2)
|
||||
|
||||
# Split compare_value2 into tokens
|
||||
compare_tokens1 = compare_value1.split()
|
||||
compare_tokens2 = compare_value2.split()
|
||||
|
||||
# Calculate similarity between user input and compare_value1 and compare_value2
|
||||
similarity1 = similarity_score(user_tokens, compare_tokens1)
|
||||
similarity2 = similarity_score(user_tokens, compare_tokens2)
|
||||
|
||||
# Take the maximum similarity between similarity1 and similarity2
|
||||
max_similarity_curr = max(similarity1, similarity2)
|
||||
print(similarity1, similarity2)
|
||||
# Update closest value if current similarity is greater
|
||||
#if max_similarity_curr > max_similarity:
|
||||
#max_similarity = max_similarity_curr
|
||||
#closest_value = return_value
|
||||
#rule_id = ruleId
|
||||
results.append((max_similarity_curr, return_value, ruleId))
|
||||
# print(results)
|
||||
results.sort(reverse=True, key=lambda x: x[0])
|
||||
return results[:3]
|
||||
|
||||
def similarity_score(set1, set2):
|
||||
# Calculate the intersection of the two sets
|
||||
intersection = len(set(set1).intersection(set(set2)))
|
||||
|
||||
# Calculate the union of the two sets
|
||||
union = len(set(set1).union(set(set2)))
|
||||
|
||||
# Calculate the Jaccard similarity coefficient
|
||||
if union == 0:
|
||||
return 0
|
||||
else:
|
||||
return intersection / union
|
||||
|
14
requirements.txt
Normal file
14
requirements.txt
Normal file
@ -0,0 +1,14 @@
|
||||
blinker==1.7.0
|
||||
click==8.1.7
|
||||
Flask==3.0.3
|
||||
Flask-Cors==4.0.0
|
||||
itsdangerous==2.1.2
|
||||
Jinja2==3.1.3
|
||||
MarkupSafe==2.1.5
|
||||
numpy==1.26.4
|
||||
pandas==2.2.2
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2024.1
|
||||
six==1.16.0
|
||||
tzdata==2024.1
|
||||
Werkzeug==3.0.2
|
Loading…
x
Reference in New Issue
Block a user