1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- import pandas as pd
- import mysql.connector
- import os
- from flask_cors import CORS
- from flask import (
- Blueprint, request, jsonify
- )
- conn = None
- bp = Blueprint('routes', __name__,)
- @bp.route('/chat/request', methods=('GET', 'POST'))
- def handle_request():
- user_input = request.args.get('question')
- top_matches = find_closest_match(user_input)
-
- recommendations = []
- for similarity, name, ruleId in top_matches:
- finalValue = f"https://communityrule.info/create/?r={ruleId}"
- recommendations.append({
- 'community': name,
- 'link': finalValue,
- })
- return jsonify(recommendations)
- def get_db_connection():
- global conn
- if conn is None or not conn.is_connected():
- conn = mysql.connector.connect(
- host=os.getenv('CLOUDRON_MYSQL_HOST'),
- user=os.getenv('CLOUDRON_MYSQL_USERNAME'),
- port=os.getenv('CLOUDRON_MYSQL_PORT'),
- password=os.getenv('CLOUDRON_MYSQL_PASSWORD'),
- database=os.getenv('CLOUDRON_MYSQL_DATABASE')
- )
- print("Database connection was successful")
- return conn
- def find_closest_match(user_input):
- conn = get_db_connection()
- max_similarity_curr = -1
- closest_value = None
- rule_id = None
- user_tokens = user_input.split()
- results = []
- cursor = conn.cursor()
- cursor.execute("SELECT summary, modules, name, rule_id FROM rules")
- rows = cursor.fetchall()
- cursor.close()
- # Compare user input with each value in the compare columns
- for compare_value1, compare_value2, return_value, ruleId in rows:
- # Convert compare_value2 to string if it's a float
- if isinstance(compare_value1, float):
- compare_value1 = str(compare_value1)
- if isinstance(compare_value2, float):
- compare_value2 = str(compare_value2)
- # Split compare_value2 into tokens
- compare_tokens1 = compare_value1.split()
- compare_tokens2 = compare_value2.split()
- # Calculate similarity between user input and compare_value1 and compare_value2
- similarity1 = similarity_score(user_tokens, compare_tokens1)
- similarity2 = similarity_score(user_tokens, compare_tokens2)
- # Take the maximum similarity between similarity1 and similarity2
- max_similarity_curr = max(similarity1, similarity2)
- # Update closest value if current similarity is greater
- #if max_similarity_curr > max_similarity:
- #max_similarity = max_similarity_curr
- #closest_value = return_value
- #rule_id = ruleId
- results.append((max_similarity_curr, return_value, ruleId))
- # print(results)
- results.sort(reverse=True, key=lambda x: x[0])
- return results[:3]
- def similarity_score(set1, set2):
- # Calculate the intersection of the two sets
- intersection = len(set(set1).intersection(set(set2)))
-
- # Calculate the union of the two sets
- union = len(set(set1).union(set(set2)))
-
- # Calculate the Jaccard similarity coefficient
- if union == 0:
- return 0
- else:
- return intersection / union
|