Files
protocol-bicorder/analysis/WORKFLOW.md
2025-11-16 23:47:10 -07:00

3.7 KiB

Protocol Bicorder Analysis Workflow

This directory contains scripts for analyzing protocols using the Protocol Bicorder framework with LLM assistance.

The scripts automatically draw the gradients from the current state of the bicorder.json file.

Scripts

  1. bicorder_batch.py - [RECOMMENDED] Process entire CSV with one command
  2. bicorder_analyze.py - Prepares CSV with gradient columns
  3. bicorder_query.py - Queries LLM for each gradient value and updates CSV (each query is a new chat)

Process All Protocols with One Command

python3 bicorder_batch.py protocols_edited.csv -o analysis_output.csv

This will:

  1. Create the analysis CSV with gradient columns
  2. For each protocol row, query all gradients (each query is a new chat with full protocol context)
  3. Update the CSV automatically with the results
  4. Show progress and summary

Common Options

# Process only rows 1-5 (useful for testing)
python3 bicorder_batch.py protocols_edited.csv -o analysis_output.csv --start 1 --end 5

# Use specific LLM model
python3 bicorder_batch.py protocols_edited.csv -o analysis_output.csv -m mistral

# Add analyst metadata
python3 bicorder_batch.py protocols_edited.csv -o analysis_output.csv \
  -a "Your Name" -s "Your analytical standpoint"

Manual Workflow (Advanced)

Step 1: Prepare the Analysis CSV

Create a CSV with empty gradient columns:

python3 bicorder_analyze.py protocols_edited.csv -o analysis_output.csv

Optional: Add analyst metadata:

python3 bicorder_analyze.py protocols_edited.csv -o analysis_output.csv \
  -a "Your Name" -s "Your analytical standpoint"

Step 2: Query Gradients for a Protocol Row

Query all gradients for a specific protocol:

python3 bicorder_query.py analysis_output.csv 1
  • Replace 1 with the row number you want to analyze
  • Each gradient is queried in a new chat with full protocol context
  • Each response is automatically parsed and written to the CSV
  • Progress is shown for each gradient

Optional: Specify a model:

python3 bicorder_query.py analysis_output.csv 1 -m mistral

Step 3: Repeat for All Protocols

For each protocol in your CSV:

python3 bicorder_query.py analysis_output.csv 1
python3 bicorder_query.py analysis_output.csv 2
python3 bicorder_query.py analysis_output.csv 3
# ... and so on

# OR: Use bicorder_batch.py to automate all of this!

Architecture

How It Works

Each gradient query is sent to the LLM as a new, independent chat. Every query includes:

  • The protocol descriptor (name)
  • The protocol description
  • The gradient definition (left term, right term, and their descriptions)
  • Instructions to rate 1-9

This approach:

  • Simplifies the code - No conversation state management
  • Prevents bias - Each evaluation is independent, not influenced by previous responses
  • Enables parallelization - Queries could theoretically run concurrently
  • Makes debugging easier - Each query/response pair is self-contained

Tips

Dry Run Mode

Test prompts without calling the LLM:

python3 bicorder_query.py analysis_output.csv 1 --dry-run

This shows you exactly what prompt will be sent for each gradient, including the full protocol context.

Check Your Progress

View completed values:

python3 -c "
import csv
with open('analysis_output.csv') as f:
    reader = csv.DictReader(f)
    for i, row in enumerate(reader, 1):
        empty = sum(1 for k, v in row.items() if 'vs' in k and not v)
        print(f'Row {i}: {empty}/23 gradients empty')
"

Batch Processing

Use the bicorder_batch.py script (see Quick Start section above) for processing multiple protocols.