Added classifer analysis to bicorder ascii and web app

This commit is contained in:
Nathan Schneider
2025-12-21 21:38:39 -07:00
parent b541f85553
commit 1b508b911f
17 changed files with 2795 additions and 49 deletions

View File

@@ -6,9 +6,15 @@
import AnalysisDisplay from './components/AnalysisDisplay.svelte';
import ExportControls from './components/ExportControls.svelte';
import HelpModal from './components/HelpModal.svelte';
import FormRecommendation from './components/FormRecommendation.svelte';
import { BicorderClassifier } from './bicorder-classifier';
// Load bicorder data from build-time constant
// Load bicorder data and model from build-time constants
let data: BicorderState = JSON.parse(JSON.stringify(__BICORDER_DATA__));
const model = __BICORDER_MODEL__;
// Initialize classifier
const classifier = new BicorderClassifier(model, data.version);
// Initialize timestamp if not set
if (!data.metadata.timestamp) {
@@ -30,7 +36,7 @@
| { type: 'export' };
// Calculate all screens based on current shortform setting
function calculateScreens(): Screen[] {
function calculateScreens(isShortForm: boolean): Screen[] {
const screens: Screen[] = [];
// Metadata screen
@@ -39,7 +45,7 @@
// Diagnostic gradient screens
data.diagnostic.forEach((diagnosticSet, setIndex) => {
diagnosticSet.gradients.forEach((gradient, gradientIndex) => {
if (!data.metadata.shortform || gradient.shortform) {
if (!isShortForm || gradient.shortform) {
screens.push({
type: 'gradient',
setIndex,
@@ -52,7 +58,7 @@
});
// Analysis screens (not in shortform)
if (!data.metadata.shortform) {
if (!isShortForm) {
data.analysis.forEach((gradient, index) => {
screens.push({ type: 'analysis', index, gradient });
});
@@ -64,10 +70,16 @@
return screens;
}
$: screens = calculateScreens();
// Recalculate screens when data or shortform changes (explicit dependency)
$: screens = calculateScreens(data.metadata.shortform);
$: currentScreenData = screens[currentScreen];
$: totalScreens = screens.length;
// Debug: log when screens change
$: if (screens) {
console.log(`Screens updated: ${screens.length} total, shortform: ${data.metadata.shortform}`);
}
function goToNextScreen() {
if (currentScreen < totalScreens - 1) {
currentScreen++;
@@ -188,7 +200,59 @@
// Max deviation is 4 (from 1 or 9), min is 0 (at 5)
// Higher deviation = more polarized = lower value
const polarizationScore = 9 - (avgDeviation / 4) * 8;
return Math.round(polarizationScore);
// Clamp to 1-9 range and round
return Math.round(Math.max(1, Math.min(9, polarizationScore)));
}
function ldaScoreToScale(ldaScore: number | null): number | null {
/**
* Convert LDA score to 1-9 scale.
* LDA scores typically range from -4 to +4 (8 range)
* Target scale is 1 to 9 (8 range)
*
* Formula: value = 5 + (ldaScore * 4/3)
* - LDA -3 or less → 1 (bureaucratic)
* - LDA 0 → 5 (boundary)
* - LDA +3 or more → 9 (relational)
*/
if (ldaScore === null) return null;
// Scale: value = 5 + (ldaScore * 1.33)
const value = 5 + (ldaScore * 4.0 / 3.0);
// Clamp to 1-9 range and round
return Math.round(Math.max(1, Math.min(9, value)));
}
function calculateBureaucratic(): number | null {
// Collect all diagnostic gradients with their set and gradient info
const ratings: Record<string, number> = {};
data.diagnostic.forEach((diagnosticSet) => {
const setName = diagnosticSet.set_name;
diagnosticSet.gradients.forEach((gradient) => {
if (gradient.value !== null) {
// Create dimension name in format: SetName_left_vs_right
const dimensionName = `${setName}_${gradient.term_left}_vs_${gradient.term_right}`;
ratings[dimensionName] = gradient.value;
}
});
});
// Check if we have any ratings
if (Object.keys(ratings).length === 0) return null;
try {
// Get prediction from classifier (need detailed: true to get ldaScore)
const result = classifier.predict(ratings, { detailed: true });
// Convert LDA score to 1-9 scale
return ldaScoreToScale(result.ldaScore);
} catch (error) {
console.error('Error calculating bureaucratic/relational score:', error);
return null;
}
}
// Update automated analysis values reactively
@@ -196,16 +260,29 @@
data.analysis.forEach((item, index) => {
if (item.automated) {
if (index === 0) {
// Hardness/Softness
data.analysis[0].value = calculateHardness();
} else if (index === 1) {
// Polarized/Centrist
data.analysis[1].value = calculatePolarization();
} else if (index === 2) {
// Bureaucratic/Relational (LDA classifier)
data.analysis[2].value = calculateBureaucratic();
}
}
});
}
function handleMetadataUpdate(event: CustomEvent) {
data.metadata = { ...data.metadata, ...event.detail };
// Properly trigger reactivity for nested metadata changes
data = {
...data,
metadata: { ...data.metadata, ...event.detail }
};
// Force refresh if shortform changed
if (event.detail.shortform !== undefined) {
refreshKey++;
}
}
function handleReset() {
@@ -215,21 +292,79 @@
}
}
function handleProgressBarClick(event: MouseEvent) {
// Calculate which screen to jump to based on click position
const target = event.currentTarget as HTMLElement;
const rect = target.getBoundingClientRect();
const x = event.clientX - rect.left;
const width = rect.width;
// Calculate ratio (0 to 1)
const ratio = Math.max(0, Math.min(1, x / width));
// Calculate target screen (round to nearest)
const targetScreen = Math.round(ratio * (totalScreens - 1));
// Jump to that screen
currentScreen = targetScreen;
}
function openHelp() {
isHelpOpen = true;
}
function handleSwitchToLongForm() {
// Turn off shortform mode while preserving all entered values
data = {
...data,
metadata: {
...data.metadata,
shortform: false
}
};
// Force refresh of components
refreshKey++;
// Reset to first screen to show user the full form
currentScreen = 0;
}
</script>
<HelpModal bind:isOpen={isHelpOpen} />
<main>
<div class="header">
<button class="help-btn" on:click={openHelp} aria-label="About the Bicorder">?</button>
<div class="title">Protocol</div>
<div class="title">BICORDER</div>
<button class="mode-toggle" on:click={toggleViewMode} aria-label="Toggle view mode">
{viewMode === 'focused' ? '☰' : '⊡'}
</button>
<div class="header-left">
<button
class="toolbar-btn help-btn"
on:click={openHelp}
aria-label="About the Bicorder"
title="Help & Instructions"
>
?
</button>
</div>
<div class="header-center">
<div class="title">Protocol</div>
<div class="title">BICORDER</div>
</div>
<div class="header-right">
<FormRecommendation
{classifier}
diagnosticData={data.diagnostic}
isShortForm={data.metadata.shortform}
on:switchToLongForm={handleSwitchToLongForm}
/>
<button
class="toolbar-btn mode-toggle"
on:click={toggleViewMode}
aria-label="Toggle view mode"
title={viewMode === 'focused' ? 'Switch to list view' : 'Switch to focused view'}
>
{viewMode === 'focused' ? '☰' : '⊡'}
</button>
</div>
</div>
{#if viewMode === 'list'}
@@ -407,7 +542,18 @@
</div>
<div class="progress-indicator">
<div class="progress-bar">{progressBar}</div>
<div
class="progress-bar clickable"
on:click={handleProgressBarClick}
role="slider"
aria-label="Jump to screen"
aria-valuemin={0}
aria-valuemax={totalScreens - 1}
aria-valuenow={currentScreen}
title="Click to jump to a screen"
>
{progressBar}
</div>
<div class="progress-numbers">{currentScreen + 1} / {totalScreens}</div>
</div>
</div>
@@ -429,11 +575,31 @@
}
.header {
text-align: center;
display: grid;
grid-template-columns: 1fr auto 1fr;
align-items: center;
margin-bottom: 1rem;
border-bottom: 2px solid var(--border-color);
padding-bottom: 1rem;
position: relative;
gap: 1rem;
}
.header-left {
display: flex;
justify-content: flex-start;
align-items: center;
gap: 0.5rem;
}
.header-center {
text-align: center;
}
.header-right {
display: flex;
justify-content: flex-end;
align-items: center;
gap: 0.5rem;
}
.title {
@@ -442,51 +608,37 @@
letter-spacing: 0.2rem;
}
.help-btn {
position: absolute;
top: 0;
left: 0;
.toolbar-btn {
width: 2rem;
height: 2rem;
padding: 0;
font-size: 1.2rem;
font-size: 1rem;
font-weight: bold;
cursor: pointer;
background: var(--bg-color);
color: var(--fg-color);
border: 1px solid var(--border-color);
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
opacity: 0.4;
transition: opacity 0.2s, background-color 0.2s;
min-height: auto;
flex-shrink: 0;
border-radius: 3px;
}
.help-btn:hover {
.toolbar-btn.help-btn {
font-size: 1.2rem;
}
.toolbar-btn:hover {
opacity: 0.8;
background-color: var(--input-bg);
}
.mode-toggle {
position: absolute;
top: 0;
right: 0;
padding: 0.3rem 0.6rem;
font-size: 0.9rem;
cursor: pointer;
background: var(--bg-color);
color: var(--fg-color);
border: 1px solid var(--border-color);
min-height: auto;
opacity: 0.4;
transition: opacity 0.2s;
}
.mode-toggle:hover {
opacity: 0.8;
background-color: var(--input-bg);
border-color: var(--border-color);
}
.description {
@@ -657,6 +809,23 @@
color: var(--fg-color);
}
.progress-bar.clickable {
cursor: pointer;
user-select: none;
transition: opacity 0.2s, transform 0.1s;
padding: 0.5rem;
margin: -0.5rem;
}
.progress-bar.clickable:hover {
opacity: 0.7;
transform: scale(1.05);
}
.progress-bar.clickable:active {
transform: scale(0.98);
}
.progress-numbers {
font-size: 0.9rem;
font-weight: bold;
@@ -669,6 +838,11 @@
padding: 0.5rem;
}
.header {
gap: 0.5rem;
padding-bottom: 0.75rem;
}
.title {
font-size: 1.2rem;
}
@@ -677,15 +851,18 @@
font-size: 1rem;
}
.help-btn {
width: 1.75rem;
height: 1.75rem;
font-size: 1rem;
.toolbar-btn {
width: 1.5rem;
height: 1.5rem;
font-size: 0.85rem;
}
.toolbar-btn.help-btn {
font-size: 0.9rem;
}
.mode-toggle {
font-size: 0.85rem;
padding: 0.25rem 0.5rem;
font-size: 0.75rem;
}
.description {

View File

@@ -0,0 +1,268 @@
/**
* Bicorder Cluster Classifier
*
* Real-time protocol classification for the Bicorder web app.
* Predicts which protocol family (Relational/Cultural vs Institutional/Bureaucratic)
* a protocol belongs to based on dimension ratings.
*
* Usage:
* import { BicorderClassifier } from './bicorder-classifier.js';
*
* const classifier = new BicorderClassifier(modelData);
* const result = classifier.predict(ratings);
* console.log(`Cluster: ${result.clusterName} (${result.confidence}% confidence)`);
*/
export class BicorderClassifier {
/**
* @param {Object} model - Model data loaded from bicorder_model.json
* @param {string} bicorderVersion - Version of bicorder.json being used
*
* Simple version-matching approach: The model includes a bicorder_version
* field. When bicorder structure changes, update the version and retrain.
*/
constructor(model, bicorderVersion = null) {
this.model = model;
this.dimensions = model.dimensions;
this.keyDimensions = model.key_dimensions;
this.bicorderVersion = bicorderVersion;
// Check version compatibility
if (bicorderVersion && model.bicorder_version && bicorderVersion !== model.bicorder_version) {
console.warn(`Model version (${model.bicorder_version}) doesn't match bicorder version (${bicorderVersion}). Results may be inaccurate.`);
}
}
/**
* Standardize values using the fitted scaler
* @private
*/
_standardize(values) {
return values.map((val, i) => {
if (val === null || val === undefined) return null;
return (val - this.model.scaler.mean[i]) / this.model.scaler.scale[i];
});
}
/**
* Calculate LDA score (position on discriminant axis)
* @private
*/
_ldaScore(scaledValues) {
// Fill missing values with 0 (mean in scaled space)
const filled = scaledValues.map(v => v === null ? 0 : v);
// Calculate: coef · x + intercept
let score = this.model.lda.intercept;
for (let i = 0; i < filled.length; i++) {
score += this.model.lda.coefficients[i] * filled[i];
}
return score;
}
/**
* Calculate Euclidean distance
* @private
*/
_distance(a, b) {
let sum = 0;
for (let i = 0; i < a.length; i++) {
const diff = a[i] - b[i];
sum += diff * diff;
}
return Math.sqrt(sum);
}
/**
* Predict cluster for given ratings
*
* @param {Object} ratings - Map of dimension names to values (1-9)
* Can be partial - missing dimensions handled gracefully
* @param {Object} options - Options
* @param {boolean} options.detailed - Return detailed information (default: true)
*
* @returns {Object} Prediction result with:
* - cluster: Cluster number (1 or 2)
* - clusterName: Human-readable name
* - confidence: Confidence percentage (0-100)
* - completeness: Percentage of dimensions provided (0-100)
* - recommendedForm: 'short' or 'long'
* - ldaScore: Position on discriminant axis
* - distanceToBoundary: Distance from cluster boundary
*/
predict(ratings, options = { detailed: true }) {
// Convert ratings object to array
const values = this.dimensions.map(dim => ratings[dim] ?? null);
const providedCount = values.filter(v => v !== null).length;
const completeness = providedCount / this.dimensions.length;
// Fill missing with neutral value (5 = middle of 1-9 scale)
const filled = values.map(v => v ?? 5);
// Standardize
const scaled = this._standardize(filled);
// Calculate LDA score
const ldaScore = this._ldaScore(scaled);
// Predict cluster (LDA boundary at 0)
// Positive score = cluster 2 (Institutional)
// Negative score = cluster 1 (Relational)
const cluster = ldaScore > 0 ? 2 : 1;
const clusterName = this.model.cluster_names[cluster];
// Calculate confidence based on distance from boundary
const distanceToBoundary = Math.abs(ldaScore);
// Confidence: higher when further from boundary
// Normalize based on typical strong separation (3.0)
let confidence = Math.min(1.0, distanceToBoundary / 3.0);
// Adjust for completeness
const adjustedConfidence = confidence * (0.5 + 0.5 * completeness);
// Recommend form
// Use long form when:
// 1. Low confidence (< 0.6)
// 2. Low completeness (< 50% of dimensions)
// 3. Near boundary (< 0.5 distance)
const shouldUseLongForm =
adjustedConfidence < this.model.thresholds.confidence_low ||
completeness < this.model.thresholds.completeness_low ||
distanceToBoundary < this.model.thresholds.boundary_distance_low;
const recommendedForm = shouldUseLongForm ? 'long' : 'short';
const basicResult = {
cluster,
clusterName,
confidence: Math.round(adjustedConfidence * 100),
completeness: Math.round(completeness * 100),
recommendedForm,
};
if (!options.detailed) {
return basicResult;
}
// Calculate distances to cluster centroids
const filledScaled = scaled.map(v => v ?? 0);
const distances = {};
for (const [clusterId, centroid] of Object.entries(this.model.cluster_centroids_scaled)) {
distances[clusterId] = this._distance(filledScaled, centroid);
}
// Count key dimensions provided
const keyDimensionsProvided = this.keyDimensions.filter(
dim => ratings[dim] !== null && ratings[dim] !== undefined
).length;
return {
...basicResult,
ldaScore,
distanceToBoundary,
dimensionsProvided: providedCount,
dimensionsTotal: this.dimensions.length,
keyDimensionsProvided,
keyDimensionsTotal: this.keyDimensions.length,
distancesToCentroids: distances,
rawConfidence: Math.round(confidence * 100),
};
}
/**
* Get explanation of classification
*
* @param {Object} ratings - Dimension ratings
* @returns {string} Human-readable explanation
*/
explainClassification(ratings) {
const result = this.predict(ratings, { detailed: true });
const lines = [];
lines.push(`Protocol Classification: ${result.clusterName}`);
lines.push(`Confidence: ${result.confidence}%`);
lines.push('');
if (result.cluster === 2) {
lines.push('This protocol leans toward Institutional/Bureaucratic characteristics:');
lines.push(' • More likely to be formal, standardized, top-down');
lines.push(' • May involve state/corporate enforcement');
lines.push(' • Tends toward precise, documented procedures');
} else {
lines.push('This protocol leans toward Relational/Cultural characteristics:');
lines.push(' • More likely to be emergent, community-based');
lines.push(' • May involve voluntary participation');
lines.push(' • Tends toward interpretive, flexible practices');
}
lines.push('');
lines.push(`Distance from boundary: ${result.distanceToBoundary.toFixed(2)}`);
if (result.distanceToBoundary < 0.5) {
lines.push('⚠️ This protocol is near the boundary between families.');
lines.push(' It may exhibit characteristics of both types.');
}
lines.push('');
lines.push(`Completeness: ${result.completeness}% (${result.dimensionsProvided}/${result.dimensionsTotal} dimensions)`);
if (result.completeness < 100) {
lines.push('Note: Missing dimensions filled with neutral values (5)');
lines.push(' Confidence improves with complete data');
}
lines.push('');
lines.push(`Recommended form: ${result.recommendedForm.toUpperCase()}`);
if (result.recommendedForm === 'long') {
lines.push('Reason: Use long form for:');
if (result.confidence < 60) {
lines.push(' • Low classification confidence');
}
if (result.completeness < 50) {
lines.push(' • Incomplete data');
}
if (result.distanceToBoundary < 0.5) {
lines.push(' • Ambiguous positioning between families');
}
} else {
lines.push(`Reason: High confidence classification with ${result.completeness}% data`);
}
return lines.join('\n');
}
/**
* Get the list of key dimensions for short form
* @returns {Array<string>} Dimension names
*/
getKeyDimensions() {
return [...this.keyDimensions];
}
/**
* Check if enough key dimensions are provided for reliable short-form classification
* @param {Object} ratings - Current ratings
* @returns {Object} Assessment with recommendation
*/
assessShortFormReadiness(ratings) {
const keyProvided = this.keyDimensions.filter(
dim => ratings[dim] !== null && ratings[dim] !== undefined
);
const coverage = keyProvided.length / this.keyDimensions.length;
const isReady = coverage >= 0.75; // 75% of key dimensions
return {
ready: isReady,
keyDimensionsProvided: keyProvided.length,
keyDimensionsTotal: this.keyDimensions.length,
coverage: Math.round(coverage * 100),
missingKeyDimensions: this.keyDimensions.filter(
dim => !ratings[dim]
),
};
}
}

View File

@@ -78,7 +78,7 @@
function renderBar(value: number | null): string {
// Fixed scale with 9 positions using ||||#||||
if (value === null) {
return '||||·||||';
return '||||+||||';
}
// Value is 1-9, position the # marker at the right spot
const positions = [

View File

@@ -0,0 +1,450 @@
<script lang="ts">
import { createEventDispatcher } from 'svelte';
import type { BicorderClassifier } from '../bicorder-classifier';
export let classifier: BicorderClassifier;
export let diagnosticData: any;
export let isShortForm: boolean;
const dispatch = createEventDispatcher<{
switchToLongForm: void;
}>();
let isExpanded = false;
let recommendation: any = null;
let hasEnoughData = false;
// Calculate recommendation based on current diagnostic data
$: {
// Collect ratings from diagnostic data
const ratings: Record<string, number> = {};
let valueCount = 0;
let shortFormTotal = 0;
diagnosticData.forEach((diagnosticSet: any) => {
const setName = diagnosticSet.set_name;
diagnosticSet.gradients.forEach((gradient: any) => {
// Count shortform gradients
if (gradient.shortform) {
shortFormTotal++;
}
if (gradient.value !== null) {
const dimensionName = `${setName}_${gradient.term_left}_vs_${gradient.term_right}`;
ratings[dimensionName] = gradient.value;
// Only count shortform values for the threshold
if (gradient.shortform) {
valueCount++;
}
}
});
});
// Only show if at least half of shortform gradients are complete
const threshold = Math.ceil(shortFormTotal / 2);
hasEnoughData = valueCount >= threshold;
if (hasEnoughData && isShortForm) {
try {
const prediction = classifier.predict(ratings, { detailed: true });
const assessment = classifier.assessShortFormReadiness(ratings);
recommendation = {
...prediction,
...assessment,
};
} catch (error) {
console.error('Error getting form recommendation:', error);
recommendation = null;
}
} else {
recommendation = null;
}
}
function toggleExpanded() {
isExpanded = !isExpanded;
}
function handleSwitchToLongForm() {
dispatch('switchToLongForm');
isExpanded = false;
}
// Determine status: 'good' (green) or 'warning' (yellow/orange)
$: status = recommendation?.recommendedForm === 'long' ? 'warning' : 'good';
$: showIndicator = hasEnoughData && isShortForm && recommendation;
</script>
{#if showIndicator}
<div class="form-recommendation" class:expanded={isExpanded}>
<button
class="indicator"
class:good={status === 'good'}
class:warning={status === 'warning'}
on:click={toggleExpanded}
aria-label="Data quality indicator"
title={status === 'good' ? 'Short form working well' : 'Long form recommended'}
>
<span class="light"></span>
</button>
{#if isExpanded}
<div class="panel-backdrop" on:click={toggleExpanded} on:keydown={() => {}} role="button" tabindex="-1">
<div class="details-panel" on:click|stopPropagation on:keydown={() => {}} role="dialog" aria-modal="true">
<div class="panel-header">
<h3>Data Quality Assessment</h3>
<button class="close-btn" on:click={toggleExpanded} aria-label="Close">+</button>
</div>
<div class="panel-body">
<div class="metric">
<span class="metric-label">Classification Confidence:</span>
<span class="metric-value" class:low={recommendation.confidence < 60}>
{recommendation.confidence}%
</span>
</div>
<div class="metric">
<span class="metric-label">Data Completeness:</span>
<span class="metric-value" class:low={recommendation.completeness < 50}>
{recommendation.completeness}% ({recommendation.dimensionsProvided}/{recommendation.dimensionsTotal} dimensions)
</span>
</div>
<div class="metric">
<span class="metric-label">Key Dimensions:</span>
<span class="metric-value" class:low={recommendation.coverage < 75}>
{recommendation.coverage}% ({recommendation.keyDimensionsProvided}/{recommendation.keyDimensionsTotal})
</span>
</div>
<div class="classification">
<div class="classification-label">Current Classification:</div>
<div class="classification-value">
<strong>{recommendation.clusterName}</strong>
{#if recommendation.distanceToBoundary < 0.5}
<span class="boundary-warning">(Near boundary)</span>
{/if}
</div>
</div>
{#if recommendation.recommendedForm === 'long'}
<div class="recommendation-message warning">
<strong>⚠ Long Form Recommended</strong>
<p>
{#if recommendation.confidence < 60}
• Low classification confidence<br>
{/if}
{#if recommendation.completeness < 50}
• Incomplete data (less than 50% of dimensions)<br>
{/if}
{#if recommendation.distanceToBoundary < 0.5}
• Protocol near boundary between families<br>
{/if}
{#if recommendation.coverage < 75}
• Missing key dimensions for reliable short-form classification<br>
{/if}
</p>
<button class="switch-btn" on:click={handleSwitchToLongForm}>
Switch to Long Form →
</button>
<p class="note">All your current values will be preserved.</p>
</div>
{:else}
<div class="recommendation-message good">
<strong>✓ Short Form Working Well</strong>
<p>
Your current data provides {recommendation.confidence}% confidence classification.
Continue with short form or switch to long form for more detailed analysis.
</p>
</div>
{/if}
</div>
</div>
</div>
{/if}
</div>
{/if}
<style>
.form-recommendation {
position: relative;
display: flex;
align-items: center;
}
.indicator {
width: 2rem;
height: 2rem;
border-radius: 3px;
border: 1px solid var(--border-color);
background: var(--bg-color);
cursor: pointer;
display: flex;
align-items: center;
justify-content: center;
transition: all 0.3s ease;
padding: 0;
opacity: 0.4;
min-height: auto;
flex-shrink: 0;
}
.indicator:hover {
opacity: 0.8;
transform: scale(1.05);
}
.light {
width: 1rem;
height: 1rem;
border-radius: 50%;
transition: all 0.3s ease;
}
.indicator.good .light {
background: #4ade80;
box-shadow: 0 0 8px rgba(74, 222, 128, 0.5);
}
.indicator.warning .light {
background: #fbbf24;
box-shadow: 0 0 8px rgba(251, 191, 36, 0.5);
animation: pulse 2s ease-in-out infinite;
}
@keyframes pulse {
0%, 100% {
opacity: 1;
}
50% {
opacity: 0.5;
}
}
.panel-backdrop {
/* Hidden on desktop - only visible on mobile */
display: none;
}
.details-panel {
position: absolute;
top: calc(100% + 0.5rem);
right: 0;
width: 400px;
max-width: calc(100vw - 2rem);
background: var(--bg-color);
border: 2px solid var(--border-color);
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.3);
animation: slideIn 0.2s ease-out;
z-index: 1000;
}
@keyframes slideIn {
from {
opacity: 0;
transform: translateY(-10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.panel-header {
display: flex;
justify-content: space-between;
align-items: center;
padding: 1rem;
border-bottom: 1px solid var(--border-color);
}
.panel-header h3 {
margin: 0;
font-size: 1rem;
font-weight: bold;
}
.close-btn {
background: none;
border: none;
font-size: 1.5rem;
cursor: pointer;
color: var(--fg-color);
opacity: 0.6;
padding: 0;
width: 2rem;
height: 2rem;
display: flex;
align-items: center;
justify-content: center;
min-height: auto;
}
.close-btn:hover {
opacity: 1;
background: none;
}
.panel-body {
padding: 1rem;
max-height: 70vh;
overflow-y: auto;
}
.metric {
display: flex;
justify-content: space-between;
align-items: center;
padding: 0.5rem 0;
border-bottom: 1px solid var(--border-color);
font-size: 0.9rem;
}
.metric-label {
font-weight: 500;
}
.metric-value {
font-weight: bold;
color: #4ade80;
}
.metric-value.low {
color: #fbbf24;
}
.classification {
margin: 1rem 0;
padding: 0.75rem;
background: var(--input-bg);
border: 1px solid var(--border-color);
}
.classification-label {
font-size: 0.85rem;
opacity: 0.8;
margin-bottom: 0.5rem;
}
.classification-value {
font-size: 1rem;
}
.classification-value strong {
color: var(--fg-color);
}
.boundary-warning {
color: #fbbf24;
font-size: 0.85rem;
font-style: italic;
}
.recommendation-message {
margin-top: 1rem;
padding: 1rem;
border-radius: 4px;
border: 2px solid;
}
.recommendation-message.good {
background: rgba(74, 222, 128, 0.1);
border-color: #4ade80;
}
.recommendation-message.warning {
background: rgba(251, 191, 36, 0.1);
border-color: #fbbf24;
}
.recommendation-message strong {
display: block;
margin-bottom: 0.5rem;
font-size: 1rem;
}
.recommendation-message p {
margin: 0.5rem 0;
font-size: 0.85rem;
line-height: 1.6;
}
.switch-btn {
width: 100%;
margin-top: 1rem;
padding: 0.75rem;
font-size: 1rem;
font-weight: bold;
background: #fbbf24;
color: #1a1a2e;
border: none;
cursor: pointer;
transition: all 0.2s;
}
.switch-btn:hover {
background: #f59e0b;
transform: translateY(-1px);
box-shadow: 0 2px 8px rgba(251, 191, 36, 0.3);
}
.note {
font-size: 0.75rem;
font-style: italic;
opacity: 0.7;
margin-top: 0.5rem;
}
@media (max-width: 768px) {
.indicator {
width: 1.5rem;
height: 1.5rem;
}
.light {
width: 0.75rem;
height: 0.75rem;
}
/* Modal-like on mobile */
.panel-backdrop {
display: flex;
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: rgba(0, 0, 0, 0.7);
justify-content: center;
align-items: center;
z-index: 2000;
padding: 1rem;
}
.details-panel {
position: relative;
top: auto;
right: auto;
width: 100%;
max-width: 500px;
max-height: 85vh;
display: flex;
flex-direction: column;
}
.panel-body {
overflow-y: auto;
flex: 1;
}
.panel-header h3 {
font-size: 0.9rem;
}
.metric {
font-size: 0.85rem;
}
}
</style>

View File

@@ -74,7 +74,7 @@
function renderBar(value: number | null): string {
// Slider-style visualization with brackets and value number
if (value === null) {
return '[----X----]';
return '[----+----]';
}
// Value is 1-9, show the number at its position along the slider
const bars = [

View File

@@ -2,6 +2,7 @@
/// <reference types="vite/client" />
declare const __BICORDER_DATA__: any
declare const __BICORDER_MODEL__: any
interface ImportMetaEnv {
readonly VITE_APP_TITLE: string

View File

@@ -9,6 +9,11 @@ const bicorderData = JSON.parse(
fs.readFileSync(path.resolve(__dirname, '../bicorder.json'), 'utf-8')
)
// Read bicorder_model.json at build time
const bicorderModel = JSON.parse(
fs.readFileSync(path.resolve(__dirname, '../analysis/bicorder_model.json'), 'utf-8')
)
export default defineConfig({
base: './',
plugins: [
@@ -62,6 +67,7 @@ export default defineConfig({
})
],
define: {
'__BICORDER_DATA__': JSON.stringify(bicorderData)
'__BICORDER_DATA__': JSON.stringify(bicorderData),
'__BICORDER_MODEL__': JSON.stringify(bicorderModel)
}
})