Added classifer analysis to bicorder ascii and web app
This commit is contained in:
335
analysis/bicorder-classifier.js
Normal file
335
analysis/bicorder-classifier.js
Normal file
@@ -0,0 +1,335 @@
|
||||
/**
|
||||
* Bicorder Cluster Classifier
|
||||
*
|
||||
* Real-time protocol classification for the Bicorder web app.
|
||||
* Predicts which protocol family (Relational/Cultural vs Institutional/Bureaucratic)
|
||||
* a protocol belongs to based on dimension ratings.
|
||||
*
|
||||
* Usage:
|
||||
* import { BicorderClassifier } from './bicorder-classifier.js';
|
||||
*
|
||||
* const classifier = new BicorderClassifier(modelData);
|
||||
* const result = classifier.predict(ratings);
|
||||
* console.log(`Cluster: ${result.clusterName} (${result.confidence}% confidence)`);
|
||||
*/
|
||||
|
||||
export class BicorderClassifier {
|
||||
/**
|
||||
* @param {Object} model - Model data loaded from bicorder_model.json
|
||||
* @param {string} bicorderVersion - Version of bicorder.json being used
|
||||
*
|
||||
* Simple version-matching approach: The model includes a bicorder_version
|
||||
* field. When bicorder structure changes, update the version and retrain.
|
||||
*/
|
||||
constructor(model, bicorderVersion = null) {
|
||||
this.model = model;
|
||||
this.dimensions = model.dimensions;
|
||||
this.keyDimensions = model.key_dimensions;
|
||||
this.bicorderVersion = bicorderVersion;
|
||||
|
||||
// Check version compatibility
|
||||
if (bicorderVersion && model.bicorder_version && bicorderVersion !== model.bicorder_version) {
|
||||
console.warn(`Model version (${model.bicorder_version}) doesn't match bicorder version (${bicorderVersion}). Results may be inaccurate.`);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Standardize values using the fitted scaler
|
||||
* @private
|
||||
*/
|
||||
_standardize(values) {
|
||||
return values.map((val, i) => {
|
||||
if (val === null || val === undefined) return null;
|
||||
return (val - this.model.scaler.mean[i]) / this.model.scaler.scale[i];
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate LDA score (position on discriminant axis)
|
||||
* @private
|
||||
*/
|
||||
_ldaScore(scaledValues) {
|
||||
// Fill missing values with 0 (mean in scaled space)
|
||||
const filled = scaledValues.map(v => v === null ? 0 : v);
|
||||
|
||||
// Calculate: coef · x + intercept
|
||||
let score = this.model.lda.intercept;
|
||||
for (let i = 0; i < filled.length; i++) {
|
||||
score += this.model.lda.coefficients[i] * filled[i];
|
||||
}
|
||||
return score;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate Euclidean distance
|
||||
* @private
|
||||
*/
|
||||
_distance(a, b) {
|
||||
let sum = 0;
|
||||
for (let i = 0; i < a.length; i++) {
|
||||
const diff = a[i] - b[i];
|
||||
sum += diff * diff;
|
||||
}
|
||||
return Math.sqrt(sum);
|
||||
}
|
||||
|
||||
/**
|
||||
* Predict cluster for given ratings
|
||||
*
|
||||
* @param {Object} ratings - Map of dimension names to values (1-9)
|
||||
* Can be partial - missing dimensions handled gracefully
|
||||
* @param {Object} options - Options
|
||||
* @param {boolean} options.detailed - Return detailed information (default: true)
|
||||
*
|
||||
* @returns {Object} Prediction result with:
|
||||
* - cluster: Cluster number (1 or 2)
|
||||
* - clusterName: Human-readable name
|
||||
* - confidence: Confidence percentage (0-100)
|
||||
* - completeness: Percentage of dimensions provided (0-100)
|
||||
* - recommendedForm: 'short' or 'long'
|
||||
* - ldaScore: Position on discriminant axis
|
||||
* - distanceToBoundary: Distance from cluster boundary
|
||||
*/
|
||||
predict(ratings, options = { detailed: true }) {
|
||||
// Convert ratings object to array
|
||||
const values = this.dimensions.map(dim => ratings[dim] ?? null);
|
||||
const providedCount = values.filter(v => v !== null).length;
|
||||
const completeness = providedCount / this.dimensions.length;
|
||||
|
||||
// Fill missing with neutral value (5 = middle of 1-9 scale)
|
||||
const filled = values.map(v => v ?? 5);
|
||||
|
||||
// Standardize
|
||||
const scaled = this._standardize(filled);
|
||||
|
||||
// Calculate LDA score
|
||||
const ldaScore = this._ldaScore(scaled);
|
||||
|
||||
// Predict cluster (LDA boundary at 0)
|
||||
// Positive score = cluster 2 (Institutional)
|
||||
// Negative score = cluster 1 (Relational)
|
||||
const cluster = ldaScore > 0 ? 2 : 1;
|
||||
const clusterName = this.model.cluster_names[cluster];
|
||||
|
||||
// Calculate confidence based on distance from boundary
|
||||
const distanceToBoundary = Math.abs(ldaScore);
|
||||
|
||||
// Confidence: higher when further from boundary
|
||||
// Normalize based on typical strong separation (3.0)
|
||||
let confidence = Math.min(1.0, distanceToBoundary / 3.0);
|
||||
|
||||
// Adjust for completeness
|
||||
const adjustedConfidence = confidence * (0.5 + 0.5 * completeness);
|
||||
|
||||
// Recommend form
|
||||
// Use long form when:
|
||||
// 1. Low confidence (< 0.6)
|
||||
// 2. Low completeness (< 50% of dimensions)
|
||||
// 3. Near boundary (< 0.5 distance)
|
||||
const shouldUseLongForm =
|
||||
adjustedConfidence < this.model.thresholds.confidence_low ||
|
||||
completeness < this.model.thresholds.completeness_low ||
|
||||
distanceToBoundary < this.model.thresholds.boundary_distance_low;
|
||||
|
||||
const recommendedForm = shouldUseLongForm ? 'long' : 'short';
|
||||
|
||||
const basicResult = {
|
||||
cluster,
|
||||
clusterName,
|
||||
confidence: Math.round(adjustedConfidence * 100),
|
||||
completeness: Math.round(completeness * 100),
|
||||
recommendedForm,
|
||||
};
|
||||
|
||||
if (!options.detailed) {
|
||||
return basicResult;
|
||||
}
|
||||
|
||||
// Calculate distances to cluster centroids
|
||||
const filledScaled = scaled.map(v => v ?? 0);
|
||||
const distances = {};
|
||||
for (const [clusterId, centroid] of Object.entries(this.model.cluster_centroids_scaled)) {
|
||||
distances[clusterId] = this._distance(filledScaled, centroid);
|
||||
}
|
||||
|
||||
// Count key dimensions provided
|
||||
const keyDimensionsProvided = this.keyDimensions.filter(
|
||||
dim => ratings[dim] !== null && ratings[dim] !== undefined
|
||||
).length;
|
||||
|
||||
return {
|
||||
...basicResult,
|
||||
ldaScore,
|
||||
distanceToBoundary,
|
||||
dimensionsProvided: providedCount,
|
||||
dimensionsTotal: this.dimensions.length,
|
||||
keyDimensionsProvided,
|
||||
keyDimensionsTotal: this.keyDimensions.length,
|
||||
distancesToCentroids: distances,
|
||||
rawConfidence: Math.round(confidence * 100),
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Get explanation of classification
|
||||
*
|
||||
* @param {Object} ratings - Dimension ratings
|
||||
* @returns {string} Human-readable explanation
|
||||
*/
|
||||
explainClassification(ratings) {
|
||||
const result = this.predict(ratings, { detailed: true });
|
||||
const lines = [];
|
||||
|
||||
lines.push(`Protocol Classification: ${result.clusterName}`);
|
||||
lines.push(`Confidence: ${result.confidence}%`);
|
||||
lines.push('');
|
||||
|
||||
if (result.cluster === 2) {
|
||||
lines.push('This protocol leans toward Institutional/Bureaucratic characteristics:');
|
||||
lines.push(' • More likely to be formal, standardized, top-down');
|
||||
lines.push(' • May involve state/corporate enforcement');
|
||||
lines.push(' • Tends toward precise, documented procedures');
|
||||
} else {
|
||||
lines.push('This protocol leans toward Relational/Cultural characteristics:');
|
||||
lines.push(' • More likely to be emergent, community-based');
|
||||
lines.push(' • May involve voluntary participation');
|
||||
lines.push(' • Tends toward interpretive, flexible practices');
|
||||
}
|
||||
|
||||
lines.push('');
|
||||
lines.push(`Distance from boundary: ${result.distanceToBoundary.toFixed(2)}`);
|
||||
|
||||
if (result.distanceToBoundary < 0.5) {
|
||||
lines.push('⚠️ This protocol is near the boundary between families.');
|
||||
lines.push(' It may exhibit characteristics of both types.');
|
||||
}
|
||||
|
||||
lines.push('');
|
||||
lines.push(`Completeness: ${result.completeness}% (${result.dimensionsProvided}/${result.dimensionsTotal} dimensions)`);
|
||||
|
||||
if (result.completeness < 100) {
|
||||
lines.push('Note: Missing dimensions filled with neutral values (5)');
|
||||
lines.push(' Confidence improves with complete data');
|
||||
}
|
||||
|
||||
lines.push('');
|
||||
lines.push(`Recommended form: ${result.recommendedForm.toUpperCase()}`);
|
||||
|
||||
if (result.recommendedForm === 'long') {
|
||||
lines.push('Reason: Use long form for:');
|
||||
if (result.confidence < 60) {
|
||||
lines.push(' • Low classification confidence');
|
||||
}
|
||||
if (result.completeness < 50) {
|
||||
lines.push(' • Incomplete data');
|
||||
}
|
||||
if (result.distanceToBoundary < 0.5) {
|
||||
lines.push(' • Ambiguous positioning between families');
|
||||
}
|
||||
} else {
|
||||
lines.push(`Reason: High confidence classification with ${result.completeness}% data`);
|
||||
}
|
||||
|
||||
return lines.join('\n');
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the list of key dimensions for short form
|
||||
* @returns {Array<string>} Dimension names
|
||||
*/
|
||||
getKeyDimensions() {
|
||||
return [...this.keyDimensions];
|
||||
}
|
||||
|
||||
/**
|
||||
* Check if enough key dimensions are provided for reliable short-form classification
|
||||
* @param {Object} ratings - Current ratings
|
||||
* @returns {Object} Assessment with recommendation
|
||||
*/
|
||||
assessShortFormReadiness(ratings) {
|
||||
const keyProvided = this.keyDimensions.filter(
|
||||
dim => ratings[dim] !== null && ratings[dim] !== undefined
|
||||
);
|
||||
|
||||
const coverage = keyProvided.length / this.keyDimensions.length;
|
||||
const isReady = coverage >= 0.75; // 75% of key dimensions
|
||||
|
||||
return {
|
||||
ready: isReady,
|
||||
keyDimensionsProvided: keyProvided.length,
|
||||
keyDimensionsTotal: this.keyDimensions.length,
|
||||
coverage: Math.round(coverage * 100),
|
||||
missingKeyDimensions: this.keyDimensions.filter(
|
||||
dim => !ratings[dim]
|
||||
),
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Load model from JSON file
|
||||
*
|
||||
* @param {string} url - URL to bicorder_model.json
|
||||
* @returns {Promise<BicorderClassifier>} Initialized classifier
|
||||
*/
|
||||
export async function loadClassifier(url = './bicorder_model.json') {
|
||||
const response = await fetch(url);
|
||||
const model = await response.json();
|
||||
return new BicorderClassifier(model);
|
||||
}
|
||||
|
||||
// Example usage (for testing in Node.js or browser console)
|
||||
if (typeof window === 'undefined' && typeof module !== 'undefined') {
|
||||
// Node.js example
|
||||
const fs = require('fs');
|
||||
|
||||
function demo() {
|
||||
const modelData = JSON.parse(fs.readFileSync('bicorder_model.json', 'utf8'));
|
||||
const classifier = new BicorderClassifier(modelData);
|
||||
|
||||
console.log('='.repeat(80));
|
||||
console.log('BICORDER CLASSIFIER - DEMO');
|
||||
console.log('='.repeat(80));
|
||||
|
||||
// Example 1: Community protocol
|
||||
console.log('\nExample 1: Community-Based Protocol');
|
||||
console.log('-'.repeat(80));
|
||||
const communityRatings = {
|
||||
'Design_elite_vs_vernacular': 9,
|
||||
'Design_explicit_vs_implicit': 8,
|
||||
'Entanglement_flocking_vs_swarming': 9,
|
||||
'Entanglement_obligatory_vs_voluntary': 9,
|
||||
'Design_static_vs_malleable': 8,
|
||||
};
|
||||
console.log(classifier.explainClassification(communityRatings));
|
||||
|
||||
// Example 2: Institutional protocol
|
||||
console.log('\n\n' + '='.repeat(80));
|
||||
console.log('Example 2: Institutional Protocol');
|
||||
console.log('-'.repeat(80));
|
||||
const institutionalRatings = {
|
||||
'Design_elite_vs_vernacular': 1,
|
||||
'Design_explicit_vs_implicit': 1,
|
||||
'Entanglement_flocking_vs_swarming': 1,
|
||||
'Entanglement_obligatory_vs_voluntary': 1,
|
||||
};
|
||||
console.log(classifier.explainClassification(institutionalRatings));
|
||||
|
||||
// Example 3: Check short form readiness
|
||||
console.log('\n\n' + '='.repeat(80));
|
||||
console.log('Example 3: Short Form Readiness Assessment');
|
||||
console.log('-'.repeat(80));
|
||||
const partialRatings = {
|
||||
'Design_elite_vs_vernacular': 5,
|
||||
'Entanglement_flocking_vs_swarming': 6,
|
||||
};
|
||||
const assessment = classifier.assessShortFormReadiness(partialRatings);
|
||||
console.log(`Ready for reliable classification: ${assessment.ready}`);
|
||||
console.log(`Key dimensions coverage: ${assessment.coverage}% (${assessment.keyDimensionsProvided}/${assessment.keyDimensionsTotal})`);
|
||||
console.log(`Missing key dimensions: ${assessment.missingKeyDimensions.length}`);
|
||||
}
|
||||
|
||||
if (require.main === module) {
|
||||
demo();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user