Added classifer analysis to bicorder ascii and web app
This commit is contained in:
402
analysis/INTEGRATION_GUIDE.md
Normal file
402
analysis/INTEGRATION_GUIDE.md
Normal file
@@ -0,0 +1,402 @@
|
||||
# Bicorder Classifier Integration Guide
|
||||
|
||||
## Overview
|
||||
|
||||
This guide explains how to integrate the cluster classification system into the Bicorder web application to provide:
|
||||
|
||||
1. **Real-time cluster prediction** as users fill out diagnostics
|
||||
2. **Smart form selection** (short vs. long form based on classification confidence)
|
||||
3. **Visual feedback** showing protocol family positioning
|
||||
|
||||
## Design Philosophy
|
||||
|
||||
**Version-based compatibility**: The model includes a `bicorder_version` field. The classifier checks that versions match. When bicorder.json structure changes:
|
||||
1. Increment the version number in bicorder.json
|
||||
2. Retrain the model with `python3 export_model_for_js.py`
|
||||
3. The new model will have the updated version
|
||||
|
||||
This ensures the web app and model stay in sync without complex backward compatibility.
|
||||
|
||||
## Files
|
||||
|
||||
- `bicorder_model.json` - Trained model parameters (5KB, embed in app)
|
||||
- `bicorder-classifier.js` - JavaScript implementation
|
||||
- `bicorder-classifier.d.ts` - TypeScript type definitions
|
||||
|
||||
## Quick Start
|
||||
|
||||
### 1. Copy Model File
|
||||
|
||||
Copy `bicorder_model.json` to your web app's public/static assets:
|
||||
|
||||
```bash
|
||||
cp bicorder_model.json ../path/to/bicorder/public/
|
||||
```
|
||||
|
||||
### 2. Install Classifier
|
||||
|
||||
Copy the JavaScript module to your source directory:
|
||||
|
||||
```bash
|
||||
cp bicorder-classifier.js ../path/to/bicorder/src/lib/
|
||||
cp bicorder-classifier.d.ts ../path/to/bicorder/src/lib/
|
||||
```
|
||||
|
||||
### 3. Basic Usage
|
||||
|
||||
```javascript
|
||||
import { loadClassifier } from './lib/bicorder-classifier.js';
|
||||
|
||||
// Load model once at app startup
|
||||
const classifier = await loadClassifier('/bicorder_model.json');
|
||||
|
||||
// As user fills in diagnostic form
|
||||
function onDimensionChange(dimensionName, value) {
|
||||
const currentRatings = getCurrentFormValues(); // Your form state
|
||||
|
||||
const result = classifier.predict(currentRatings);
|
||||
|
||||
console.log(`Cluster: ${result.clusterName}`);
|
||||
console.log(`Confidence: ${result.confidence}%`);
|
||||
console.log(`Recommend: ${result.recommendedForm} form`);
|
||||
|
||||
updateUI(result);
|
||||
}
|
||||
```
|
||||
|
||||
## Integration Patterns
|
||||
|
||||
### Pattern 1: Progressive Classification Display
|
||||
|
||||
Show classification results as the user fills out the form:
|
||||
|
||||
```javascript
|
||||
// React/Svelte component example
|
||||
function DiagnosticForm() {
|
||||
const [ratings, setRatings] = useState({});
|
||||
const [classification, setClassification] = useState(null);
|
||||
|
||||
useEffect(() => {
|
||||
if (Object.keys(ratings).length > 0) {
|
||||
const result = classifier.predict(ratings);
|
||||
setClassification(result);
|
||||
}
|
||||
}, [ratings]);
|
||||
|
||||
return (
|
||||
<div>
|
||||
<DiagnosticQuestions onChange={setRatings} />
|
||||
|
||||
{classification && (
|
||||
<ClassificationIndicator
|
||||
cluster={classification.clusterName}
|
||||
confidence={classification.confidence}
|
||||
completeness={classification.completeness}
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Pattern 2: Smart Form Selection
|
||||
|
||||
Automatically switch between short and long forms:
|
||||
|
||||
```javascript
|
||||
function DiagnosticWizard() {
|
||||
const [ratings, setRatings] = useState({});
|
||||
|
||||
function handleDimensionComplete(dimension, value) {
|
||||
const newRatings = { ...ratings, [dimension]: value };
|
||||
setRatings(newRatings);
|
||||
|
||||
// Check if we should switch forms
|
||||
const result = classifier.predict(newRatings);
|
||||
|
||||
if (result.recommendedForm === 'long' && currentForm === 'short') {
|
||||
showFormSwitchPrompt(
|
||||
'Your protocol shows characteristics of both families. ' +
|
||||
'Would you like to use the detailed form for better classification?'
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
return <Form onDimensionComplete={handleDimensionComplete} />;
|
||||
}
|
||||
```
|
||||
|
||||
### Pattern 3: Short Form Optimization
|
||||
|
||||
Only ask the 8 most discriminative dimensions for quick classification:
|
||||
|
||||
```javascript
|
||||
const shortFormDimensions = classifier.getKeyDimensions();
|
||||
// Returns:
|
||||
// [
|
||||
// 'Design_elite_vs_vernacular',
|
||||
// 'Entanglement_flocking_vs_swarming',
|
||||
// 'Design_static_vs_malleable',
|
||||
// 'Entanglement_obligatory_vs_voluntary',
|
||||
// 'Entanglement_self-enforcing_vs_enforced',
|
||||
// 'Design_explicit_vs_implicit',
|
||||
// 'Entanglement_sovereign_vs_subsidiary',
|
||||
// 'Design_technical_vs_social',
|
||||
// ]
|
||||
|
||||
function ShortForm() {
|
||||
return (
|
||||
<div>
|
||||
<h2>Quick Classification (8 questions)</h2>
|
||||
{shortFormDimensions.map(dim => (
|
||||
<DimensionSlider key={dim} dimension={dim} />
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Pattern 4: Readiness Check
|
||||
|
||||
Check if user has provided enough data for reliable classification:
|
||||
|
||||
```javascript
|
||||
function ClassificationStatus() {
|
||||
const assessment = classifier.assessShortFormReadiness(ratings);
|
||||
|
||||
if (!assessment.ready) {
|
||||
return (
|
||||
<div className="status-warning">
|
||||
<p>
|
||||
Need {assessment.keyDimensionsTotal - assessment.keyDimensionsProvided} more
|
||||
key dimensions for reliable classification ({assessment.coverage}% complete)
|
||||
</p>
|
||||
<ul>
|
||||
{assessment.missingKeyDimensions.slice(0, 3).map(dim => (
|
||||
<li key={dim}>{formatDimensionName(dim)}</li>
|
||||
))}
|
||||
</ul>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
return <ClassificationResult result={classifier.predict(ratings)} />;
|
||||
}
|
||||
```
|
||||
|
||||
## UI Components
|
||||
|
||||
### Classification Indicator
|
||||
|
||||
Visual indicator showing cluster and confidence:
|
||||
|
||||
```javascript
|
||||
function ClassificationIndicator({ cluster, confidence, completeness }) {
|
||||
const color = cluster === 1 ? '#2E86AB' : '#A23B72';
|
||||
|
||||
return (
|
||||
<div className="classification-indicator" style={{ borderColor: color }}>
|
||||
<div className="cluster-badge" style={{ backgroundColor: color }}>
|
||||
{cluster === 1 ? 'Relational/Cultural' : 'Institutional/Bureaucratic'}
|
||||
</div>
|
||||
|
||||
<div className="confidence-bar">
|
||||
<div
|
||||
className="confidence-fill"
|
||||
style={{
|
||||
width: `${confidence}%`,
|
||||
backgroundColor: color,
|
||||
opacity: 0.3 + (confidence / 100) * 0.7,
|
||||
}}
|
||||
/>
|
||||
<span className="confidence-text">{confidence}% confidence</span>
|
||||
</div>
|
||||
|
||||
<div className="completeness">
|
||||
{completeness}% of dimensions provided
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
### Spectrum Visualization
|
||||
|
||||
Show protocol position on the relational ↔ institutional spectrum:
|
||||
|
||||
```javascript
|
||||
function SpectrumVisualization({ ldaScore, distanceToBoundary }) {
|
||||
// Scale LDA score to 0-100 for display
|
||||
// Typical range is -4 to +4
|
||||
const position = ((ldaScore + 4) / 8) * 100;
|
||||
const boundaryZone = distanceToBoundary < 0.5;
|
||||
|
||||
return (
|
||||
<div className="spectrum">
|
||||
<div className="spectrum-bar">
|
||||
<div className="spectrum-label left">Relational/Cultural</div>
|
||||
<div className="spectrum-label right">Institutional/Bureaucratic</div>
|
||||
|
||||
<div className="spectrum-track">
|
||||
{boundaryZone && (
|
||||
<div className="boundary-zone" style={{ left: '45%', width: '10%' }}>
|
||||
Boundary
|
||||
</div>
|
||||
)}
|
||||
<div
|
||||
className="protocol-marker"
|
||||
style={{ left: `${position}%` }}
|
||||
title={`LDA Score: ${ldaScore.toFixed(2)}`}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
```
|
||||
|
||||
## Form Selection Logic
|
||||
|
||||
### When to Use Short Form
|
||||
|
||||
- Initial protocol scan
|
||||
- User wants quick classification
|
||||
- Protocol clearly fits one family (confidence > 60%, distance > 0.5)
|
||||
|
||||
### When to Use Long Form
|
||||
|
||||
- Protocol near boundary (distance < 0.5)
|
||||
- Low confidence (< 60%)
|
||||
- User wants detailed analysis
|
||||
- Research/documentation purposes
|
||||
|
||||
### Recommended Flow
|
||||
|
||||
```
|
||||
User starts diagnostic
|
||||
↓
|
||||
Show short form (8 key dimensions)
|
||||
↓
|
||||
Calculate partial classification
|
||||
↓
|
||||
Is confidence > 60% AND completeness > 75%?
|
||||
↓ YES ↓ NO
|
||||
Show result Offer long form
|
||||
"For better accuracy,
|
||||
complete full diagnostic?"
|
||||
```
|
||||
|
||||
## API Reference
|
||||
|
||||
### `predict(ratings, options)`
|
||||
|
||||
Main classification function.
|
||||
|
||||
**Parameters:**
|
||||
- `ratings`: Object mapping dimension names to values (1-9)
|
||||
- `options.detailed`: Return detailed information (default: true)
|
||||
|
||||
**Returns:**
|
||||
```javascript
|
||||
{
|
||||
cluster: 1 | 2,
|
||||
clusterName: "Relational/Cultural" | "Institutional/Bureaucratic",
|
||||
confidence: 0-100,
|
||||
completeness: 0-100,
|
||||
recommendedForm: "short" | "long",
|
||||
// If detailed: true
|
||||
ldaScore: number,
|
||||
distanceToBoundary: number,
|
||||
dimensionsProvided: number,
|
||||
dimensionsTotal: 23,
|
||||
keyDimensionsProvided: number,
|
||||
keyDimensionsTotal: 8
|
||||
}
|
||||
```
|
||||
|
||||
### `explainClassification(ratings)`
|
||||
|
||||
Generate human-readable explanation.
|
||||
|
||||
**Returns:** String with explanation text
|
||||
|
||||
### `getKeyDimensions()`
|
||||
|
||||
Get the 8 most discriminative dimensions for short form.
|
||||
|
||||
**Returns:** Array of dimension names
|
||||
|
||||
### `assessShortFormReadiness(ratings)`
|
||||
|
||||
Check if enough key dimensions are provided.
|
||||
|
||||
**Returns:**
|
||||
```javascript
|
||||
{
|
||||
ready: boolean,
|
||||
keyDimensionsProvided: number,
|
||||
keyDimensionsTotal: 8,
|
||||
coverage: 0-100,
|
||||
missingKeyDimensions: string[]
|
||||
}
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
Test the classifier with example protocols:
|
||||
|
||||
```javascript
|
||||
import { BicorderClassifier } from './bicorder-classifier.js';
|
||||
import modelData from './bicorder_model.json';
|
||||
|
||||
const classifier = new BicorderClassifier(modelData);
|
||||
|
||||
// Test 1: Clearly institutional
|
||||
const institutional = {
|
||||
'Design_elite_vs_vernacular': 1,
|
||||
'Entanglement_obligatory_vs_voluntary': 1,
|
||||
'Entanglement_flocking_vs_swarming': 1,
|
||||
};
|
||||
console.log(classifier.predict(institutional));
|
||||
// Expected: Cluster 2, high confidence
|
||||
|
||||
// Test 2: Clearly relational
|
||||
const relational = {
|
||||
'Design_elite_vs_vernacular': 9,
|
||||
'Entanglement_obligatory_vs_voluntary': 9,
|
||||
'Entanglement_flocking_vs_swarming': 9,
|
||||
};
|
||||
console.log(classifier.predict(relational));
|
||||
// Expected: Cluster 1, high confidence
|
||||
|
||||
// Test 3: Boundary case
|
||||
const boundary = {
|
||||
'Design_elite_vs_vernacular': 5,
|
||||
'Entanglement_obligatory_vs_voluntary': 5,
|
||||
};
|
||||
console.log(classifier.predict(boundary));
|
||||
// Expected: Recommend long form
|
||||
```
|
||||
|
||||
## Performance
|
||||
|
||||
- Model size: ~5KB (negligible)
|
||||
- Classification time: < 1ms
|
||||
- No network calls needed (runs entirely client-side)
|
||||
- Works offline once model is loaded
|
||||
|
||||
## Next Steps
|
||||
|
||||
1. Integrate classifier into existing bicorder form
|
||||
2. Design UI components for classification display
|
||||
3. Add user preference for form selection
|
||||
4. Consider adding classification to protocol browsing/search
|
||||
5. Export classification data with completed diagnostics
|
||||
|
||||
## Questions?
|
||||
|
||||
See the demo in `bicorder-classifier.js` for working examples, or test with:
|
||||
|
||||
```bash
|
||||
node bicorder-classifier.js
|
||||
```
|
||||
Reference in New Issue
Block a user